

COLOPHON

DisCover is a magazine published by Study Association Cover and distributed among its members, Bernoulli Institute staff members and other interested people.

EDITORS

Teun Boersma (Editor-in-chief) Alexandra Thudor Phillip Rode Vlad George Coicea

CONTACT

Study Association Cover attn. DisCover PO box 407 9700 AK Groningen discover@svcover.nl www.svcover.nl

LAYOUT

Vlad George Coicea Teun Boersma Alexandra Thudor

COVER

Joanna Pęgiel

TECHNICAL INFORMATION

Typefaces: Fira Sans, Didot
Formatting: Adobe InDesign CC
Printer: Drukwerkdeal.nl

Print run: 1000

ACKNOWLEDGEMENTS

Thanks to all writers for their contributions and everyone else who helped create this magazine.

Cover

EDITORIAL

At the time of publishing, we are reaching the end of this year's summer. At the time of reading, summer may have already faded into a distant happy memory. A season marked as a time without responsibilities, a time to have fun (or slave away at an internship). Though now, your academic labours are on the horizon—or already being procrastinated—as you are reading this, we hope to help you reminisce on your last or anticipate your next break. With this edition, we hope to give you a taste of the food, the music, the doomscrolling in the sun and the gentle breeze of relaxation; a taste of summer.

It was in the deepest darkest depths of winter when the committee was finalized to create the 2025 edition of DisCover. The majority of this group had never worked on a magazine before, myself included. The creation of this edition marks a great learning experience for all those involved. From many meetings and planning fun interviews to Brainstorming Covers (both puns intended) and tinkering with InDesign, there was never a shortage of inspiration. We are very proud to present the selection we were able to make in this web of ideas.

Whether you are just starting out at Cover or have been active for a long time, we hope you will find something in this magazine for you. Maybe, you will even look back or forward to a nice summer of your own... or find time to follow one of the guides in the magazine.

In any case, we wish you a good read and a nice summer :)

CONTENT

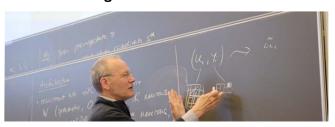
4 The board's letter

6

Coding like a DJ

- 8 Quiz: Which committee are you?
- 10 CircuitRee: Creating your own weather station

12


Active Members with Active Opinions

14 From Student Steals to Student Meals

16

Academia Throughout Time

19

Impressions of the Feringa Building

THE BOARD'S LETTER

Dear reader,

The year has consisted of a lot of ups and downs, good times and bad times, but overall this may have been one of the best years of my life. Allow me to tell you the story of how I got to be the Chairman of Cover (the short version, of course).

My journey within Cover started in my first year, September 2022. My first contact with Cover was in the introduction week, where I attended the Introduction Barbecue and the Introduction weekend. During this week I met most of my fellow students and started to learn more and more about the association. I was still a very shy first year student, but I learned to come out of my shell by joining some committees. Not long after joining committees, I became the chair of the DLCee, which was a huge step for me. As a committee chair I got into close contact with the Board of the association and more and more parts of the association started to pique my interest. After two years of being active in the association, I decided to apply for a Board position. To date, it is one of the best decisions I have ever made. It has helped me grow as a person, from a shy first year student to a confident and social Chairman. This past year was filled with opportunities that I would not have gotten without being a Board member and each of these opportunities has come with experiences and memories that will stick with me until the end of time.

I would not be where I am today without Cover. I am infinitely grateful for the people in my life, the friends that will never leave my side. I am incredibly thankful for what Cover has done for me, for the opportunities that I have gotten and for the person that I became because of it. I hope that Cover may also help you to meet new people, to learn new skills and to help you grow into a better version of yourself.

On Behalf of board XXXIII "Acta Non Verba", Julian Sprietsma

Sonic Pi: Coding like a DJ An interview with Sam Aaron

Like many others, the committee was very impressed and inspired by Sam Aaron's closing talk at SNiC: CreativIT. Sam Aaron is the mastermind behind the musical coding software Sonic Pi. This super neat project is at its core educational, designed around this premise: being easy to get into while staying interesting for professionals at the same time. Intrigued by this, with some LinkedIn-magic we invited him for an interview...

What was the founding story behind **Sonic Pi?**

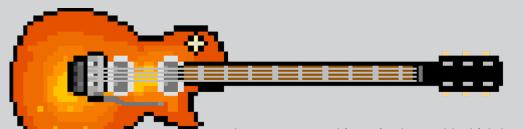
Sonic Pi was initially developed as a direct response to a call from the Raspberry Pi Foundation, the people making the little computers. They had the very charitable mission of teaching children how to code. I was lucky enough to be at Cambridge doing my postdoc at the time. There was a problem though: none of the prevalent educational software ran on this thing. Even Scratch could not run on it at the time.

So they had this computer, no software and some money to build a prototype. I was working on my own project of creating a programming language for music and I reached out to see if I could adapt it and target it towards education.

What are some of the big challenges that you ran into and how did you solve them?

Considering education, one of the big ones was the mismatch between what was in

the computing science curriculum and what kids wanted to see. The curriculum was, and still is, very good and open to interpretation.


There are topics in the curriculum that I personally found quite boring, and I had no idea whether the children would find them interesting. Things like sorting algorithms or binary arithmetic, which are only interesting if you are already interested in Computer Science. But they don't work very well to capture the imagination and engage the children.

We needed something much more broadly interesting. Meeting the learning-objectives of the project while at the same time getting the kids to be interested turned out to be the hardest problem. This resulted in adding a lot of extra functionality to Sonic Pi, which was not necessary to teach the curriculum. It was not all about computer science, but about music, things like sampling, reverb, but also complicated topics like concurrency.

> That was difficult to sell to the people running the project. They were worried about paying for these unrelated features. But the interest of the kids is crucial and they wanted to play the drums at the same time as the bass.

What sets Sonic Pi apart?

When you look at education software like Scratch, often, they tend to avoid complexity and expression in favor of simplification. So there is a system which is easy to get started with, but there is a trade-off. If you want to do professional-like things you move

away from Scratch and do something else. But I feel that is laziness, a lack of intense design.

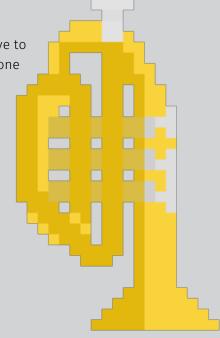
There are many objects in the world which have the property of being simple but also extremely efficient and virtuosic in the right hands. Music provides many examples, like a piano or a guitar, a beginner can fiddle with it, but an expert can play amazing music. I designed Sonic Pi with this in mind. Everyone should be able to pick it up and learn, but you should still be able to make great things if you put the time in.

The fact that these people exist, and I am able to see videos of them is the most rewarding part.

What are some of the best experiences you have had with Sonic Pi?

The most impactful thing is seeing the work that professional artists are doing with it. There is a fabulous artist, in the USA, called Sarah Davis, and she is live coding with Sonic Pi to huge crowds. She is fulfilling the dreams I had with the system: modifying the code in front of an audience, seeing a professional programmer in a different setting, not in industry, but as a live-coding DJ. The fact that these people exist, and I am able to see videos from them, is the most rewarding part.

In terms of my own experiences, I had the opportunity to perform at the Royal Albert Hall with a quartet of live-coders. After a gig at Moogfest in Durham, North Carolina, I was featured in Rolling Stone magazine—mainly, I think, because I was doing something so niche and esoteric that it made for an interesting story. Being able to actually make music with the system was also really cool.


What are some goals you still have for Sonic Pi?

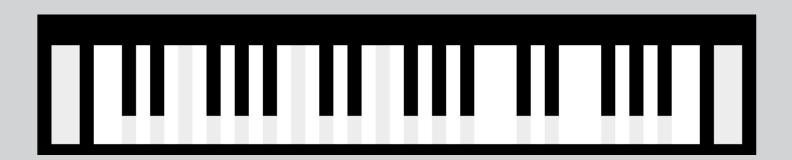
I want it to grow organically and I am focusing less on schools now. There are many social and practical factors that make it really hard to push Sonic Pi without significant resources. I think there is an opportunity for a much bigger impact at home. If we can get kids to play with it at home, having fun. That is more likely to yield interesting results than to force it down their necks in a school and make it really boring. I think this is a real problem.

The way that education is currently structured and delivered is not conducive to engaging experiences. I want Sonic Pi to be engaging, it's like Minecraft, anyone can do really cool stuff in Minecraft. I want Sonic Pi to be more like that.

What sets Sonic Pi apart from other instruments?

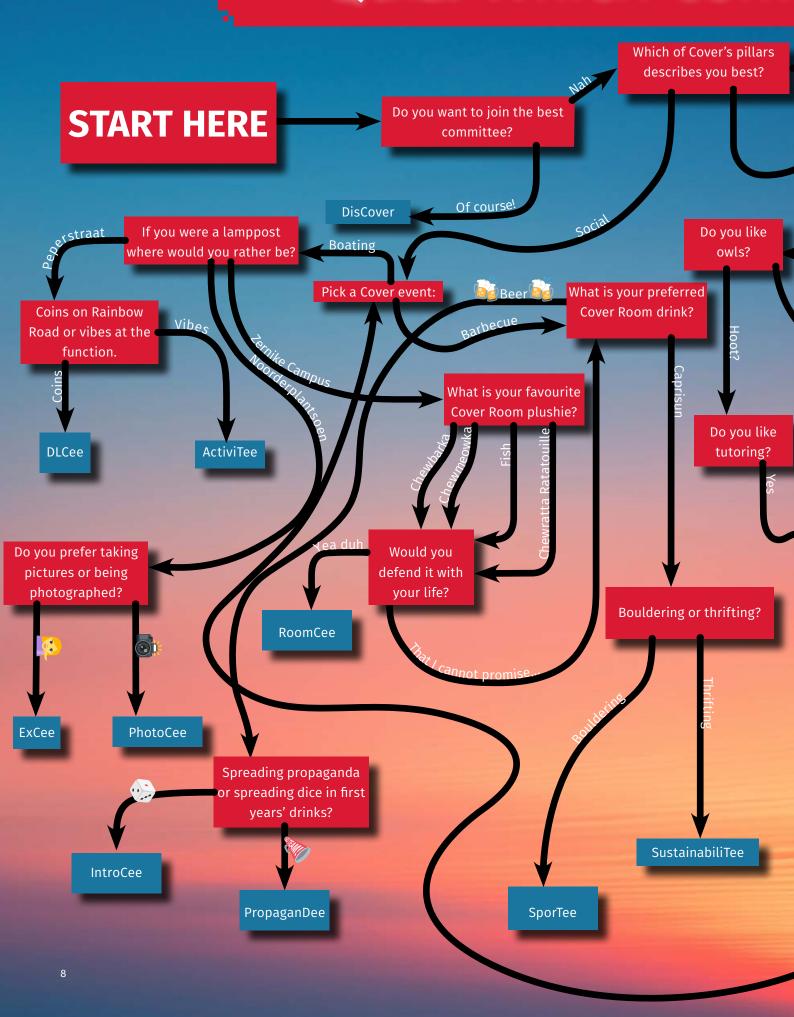
I think the exciting thing is that traditional instruments have affordances led by and constrained by the physical requirements. Some piano or guitar chords lead to very awkward finger shapes, for example. Separating the interface from the sound production is very interesting.

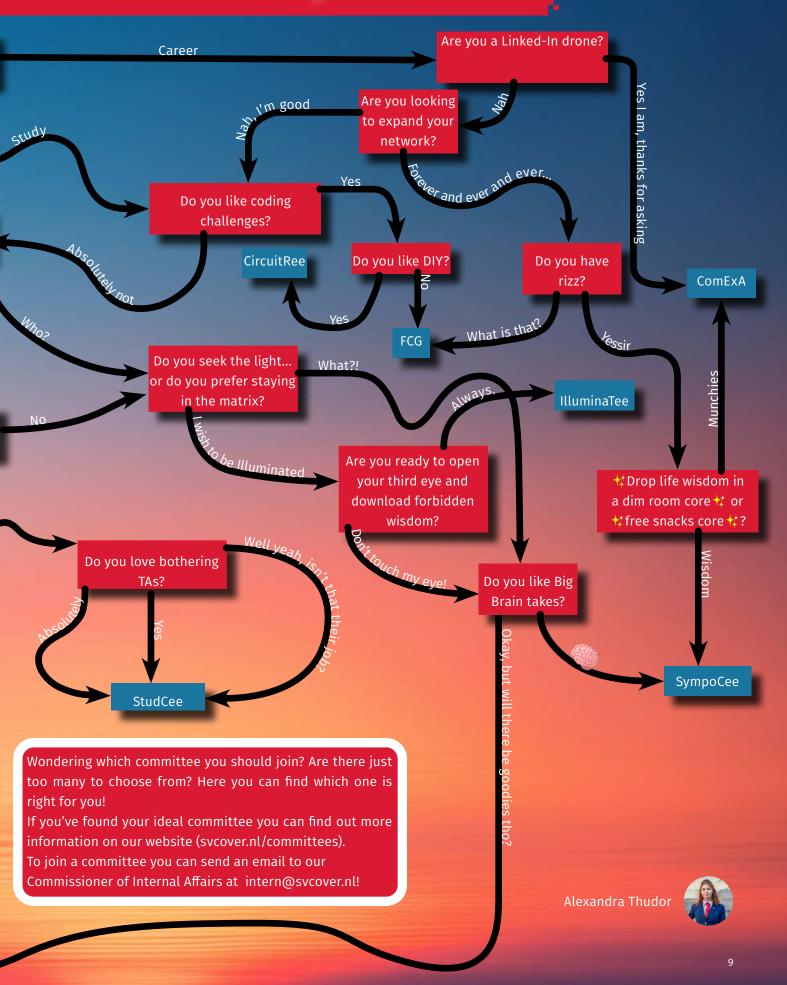
Then there is the language which communicates the composition to the performer. We have western notation with stages, dots, lines and bits of Italian. It is nice to think about the limits of this notation. Which has been explored massively in the 20th century, pushing into many interesting directions.


What would a language that allowed for more expression of music look like? Express how the sounds are formed and manipulated through time, warped and changed. Traditionally these tracks are often drink a load of beer, twiddle the knobs until it sounds cool and press record. This is great for producing interesting audio, but it is not so great for being able to reproduce, deconstruct and study the composition.


Having a score, interface and music-making device that is representable in code is exciting. This sets it apart from traditional instruments.

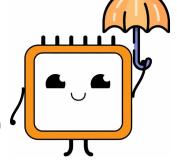
Coding is not that different from writing down the score for a certain violin piece. But with score you need to reverse engineer the higher-level ideas behind a piece, certain repeating notes or patterns.


This is different for code, you can understand the general ideas of the producer as these are directly represented in the code. While at the same time being able to look at the direct machine instructions for the sound, similar to the notes on a score sheet.



Quiz: Which com

mittee are you?!



CircuitRee: BME 280 Weather Station

Dutch weather can flip faster than your professor through the last slides. Fortunately, the CircuitRee has got you covered with a step-by-step tutorial on building your own weather station!

The BME280 is a cute¹ little sensor that does a great job of measuring weather conditions. It monitors humidity, atmospheric pressure and temperature!

Best of all? You can buy one for about €5! If you combine it with any microcontroller that supports I2C or SPI, you'll have a functional low-power weather station running on (Micro)Python. In this article, CircuitRee will show you how to set everything up using an ESP32 running MicroPython, with the whole thing only costing you around €15.

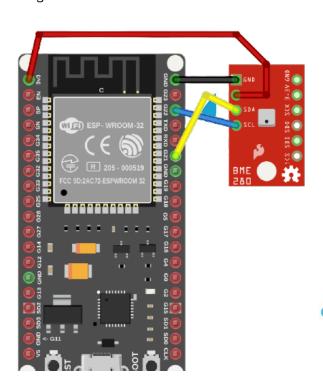
Installing MicroPython on the ESP

ESP32 boards don't ship with MicroPython installed, but don't worry too much. It is a pretty straightforward process! Follow along with this brief tutorial (or look it up)!

- 1. Head over to the official MicroPython downloads page
- 2. Download the latest stable firmware for ESP32
- 3. Install esptool by running (assuming you have Python installed):

pip install esptool # if you're on linux, look this up :C

- 4. Connect your ESP32 to your computer
- 5. Erase the flash (replace /dev/ttyUSB0 with your port i.e. COMx if you're on Windows where x is a number and /dev/ttyXXXY on Unix):


esptool.py --port /dev/ttyUSB0 erase_flash

6. Flash!

esptool.py --chip esp32 --port /dev/ttyUSB0 write_flash -z 0x1000 esp32-xxxxxx.bin

Wiring

Once you've gotten your hands on the BME280 and an (hopefully flashed) ESP, we can start wiring following the diagram below:

Now, double-check your wiring. It has to be right! This is the #1 cause of DIY projects not working!

¹ But not as cute as our Chippy.

Coding

After triple checking your wiring, there are a few steps left:

- 1. Open thonny.org and click the download button
- 2. Plug your ESP in if you disconnected it for some reason
- 3. In Thonny, find your ESP32 by clicking the text on the bottom right corner of the screen
- 4. If everything's working, you'll see the MicroPython interpreter in the "Shell" field.

From here on out, the possibilities are endless! ESP32s are quite the nifty gadgets! They can do Wi-Fi and Bluetooth, which means that you can connect to this in all sorts of ways.

You can:

- Connect it to your Wi-Fi and host a webserver which displays the data on it
- Transfer data over USB/Bluetooth serial.
- Have it control other things like connect it to a light and have it flash repeatedly when humidity hits a certain level.
- Look into ESPHome and Home Assistant for IoT applications.

The code

First, download the BME280 library from github. com/robert-hh/BME280/ and transfer it over to your ESP32! You can easily do that by copying all the code from bme280_int.py (or _float if that floats your boat), pasting it in Thonny's code area, and saving the file on the device with the name bme280.py.

Then, in a new file called main.py write:

```
from machine import Pin, I2C
import time
import bme280 # Make sure you have the bme280.py li
to your ESP32
# Initialize I2C interface
i2c = I2C(0, scl=Pin(22), sda=Pin(21), freq=100000)
# Check if connection is made
devices = i2c.scan()
if not devices:
    print("Check your wiring!")
else:
    print("I2C devices found:", devices)
sensor = bme280.BME280(i2c=i2c)
# read and print data every second
while True:
    # values are normalized, read the library, it's
    temperature_c = sensor.read_temperature() / 100
    pressure_hpa = sensor.read_pressure() / 25600
```

And there you have it! A compact, affordable weather station, up and running in just a few steps. If you enjoyed this project and want to dive deeper into chips, sensors, and DIY electronics, CircuitRee is here to provide. You can check out their past projects at circuitree.svcover.nl. Chippy hopes to see you soon at their next workshop!

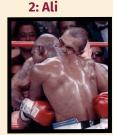
Boyan Karakostov

Active Members with Active Opinions

All of Cover's events and its existence are thanks to its 23 lovely committees (of which DisCover is obviously best) that work day and night for the association. These groups are full of character and differ greatly from each other, so we decided to get their opinions on some important issues that plague today's day and age, by getting them to rank the top 3 items of their category.

ActiviTee: Bars

- **1. Hogsmead:** Can you imagine the kind of gossip you would overhear here?
- 2. Los Island Cantina: Because the drinks are truly out of this world!
- **3. Ozdust:** Make sure to bring your best outfit or you will be chased out.


AC/DCee: Sorting Algorithms

- **1. Divine sort:** Out of all possible permutations, our list items appeared in this particular order, which must be divine intervention, lets keep it that way.
- **2. Quantum bogosort:** Start by simply randomising the order of the list. If it's not to your liking, you must destroy the universe. Assuming infinitely many universes, you'll get there eventually...
- **3. Miracle sort:** Keep checking your list until it's sorted to your requirements. Its efficiency isn't great, but if the stars align, it's a terribly effective way to sort a list.

SporTee: Fouls

1: Verstappen

ExCee: Things to do Abroad

- **1. Visit a grocery store:** It really tells you a lot about how people live and eat!
- **2. Go on a hike in nature:** It is truly never the same, beautiful and never boring.
- **3. Enjoy a drink with locals:** Get to know both the people and typical local drinks and customs.

IlluminaTee: Poker Strats

- **1. All in:** Why? Money, Money.
- **2. All in:** Why? Money, Money.
- **3. All in:** Why? Money, Money.

HeroCee: Accidents

- **1. Anything with the fingerbob:** We love the fingerbob.
- 2. Twisted Ankle: Crack.
- **3. Taking care of drunk people:** Awooga.

MxCee: Countries

- **1. San Escobar:** A lot of good can come from blunders.
- **2. Nutopia:** Good satire is always appreciated.
- **3. Principality of Sealand:** Ocean and piracy sound exciting and it's not every day that you get a Guinness World Record.

DLCee: Worst Videogames

- **1. E.T. the Extra-Terrestrial:** It is often blamed for the video game crash of 1983.
- **2. Zelda CD-i:** A deal with Phillips resulted in the infamously bad Zelda CD-i games, known for awful cutscenes and poor gameplay.
- **3. Animal Crossing: Amiibo Festival:** A dull, uninspired board game that forced players to use Amiibo figures.

StudCee: Owls

1: Perry

2: TuxCee

3: Game of thrones

SustainabiliTee: Sustainable Logos

Tee: Fashion Styles

2. Goth: 15 year old me would be disappointed if I

3. Hippie: Flowy tie-dye means any coffee spill becomes "abstract art", and sandals give your feet a

1. Board Suit: Board 'vo

year-round beach pass.

don't name goth.

- **1. Shell:** Shells make for a great fertilizer, can be a very sustainable alternative to what a lot of companies use!
- 2. Minecraft: The logo is literally earth.
- **3. Tropicana:** They could totally pass off for an organization that protects tropical regions.

RoomCee: Cover Plushies

- 1. Chewbarka: They are the OG.
- **2. Chewratta Ratatouille:** He is always a trusty throwdent.
- **3. Roomshroom the Paddestoel:** It usually sits on the side of the room, happily relaxing. It's like your introverted buddy at a party.

ComExa: Oil Companies

- **1. Bad Boy Records:** They produce great music, but I heard the main guy likes oil, a lot.
- **2. Carapelli:** High prices but amazing olive oil for cooking. Super high quality.
- 3. Shell: Their logo looks cool.

FCG: EsoLangs

- **1. ArnoldC:** All lines come straight from Arnold Schwarzenegger quotes.
- **2. Chicken:** This language exclusively uses the word "chicken" and newline characters to programme.
- **3. Brainrot:** This language brings out the doomscroller within you to achieve greatness.

PropaganDee: Weird (old) Posters

1: MarioKart

2: Cluedo

3: Cleanup

FROM STUDENT STEAL

HANGOVER MUFFIN

The PERFECT hangover

(FAST and delicious)

Ingredients

- » 1 English muffin
- 1 egg
- 1 slice of (vegan) cheese
- 1 (vegan) sausage
- 2 tbsp of oil
- Spices: salt, pepper, thyme (or anything you like)

Steps

- 1. Take the sausage and remove its skin and put it in a bowl.
- 2. Mix the sausage well with the spices, take it out, and form a patty.
- 3. Fry it at medium heat in a tsp of oil until it is well-cooked.
- 4. Take it out and let it rest with the slice of cheese on top.
- 5. In the same pan, fry an egg in a tsp of oil for a little while, and take it out before the yolk gets cooked. Cut the English muffin in half and heat it up in that same pan, but without oil.
- 6. In the end, put the patty and the egg between the two halves of muffin, and enjoy your breakfast, or make it "to go". Enjoy!

AIRFRYER S'MORES

If you have an air fryer, this is a delicious sweet treat that you can put together in a couple of minutes!!

Ingredients

- 1 bar of Chocolate
- 1 bag of Marshmallows
- » 1 bag of "Petit Beurre" biscuits (or any simple biscuits)

Steps

- 1. Put a biscuit with a marshmallow on top in the air fryer.
- 2. Let it cook for 2-3 minutes at 200 degrees.
- 3. Take them out and put a chocolate square on top of the marshmallow.
- 4. After the chocolate has melted, put another biscuit on top, and enjoy!

S TO STUDENT MEALS

Jazzy Noodles

An upgrade to your beloved instant noodles.

Ingredients

- » 1 pack of instant noodles (either ramen or just noodles with sauce)
- » 1 egg
- » 1 scallion
- » 1 tsp of sesame seeds
- » chilli flakes (to taste)
- » 1 tbsp of oil

Steps

- 1. Chop the scallion and mix in a small bowl with the sesame seeds and the chilli flakes.
- Heat the oil in a pan, and pour it over the dry ingredients. Let them sizzle (it enhances the taste!!)
- 3. Cook the noodles according to the package and add all the spices over them, but leave the oil pack out, if there is any.
- 4. Drain the sesame seeds, chilli flakes and scallions and mix them into a bowl with the noodles.
- Fry/soft boil/poach the egg (keep the yolk uncooked), and put it on top of the noodles. Enjoy!

COVER COCKTAIL

Add this recipe in your repertoire next time you're doing a cocktail night with your friends!!

Scarlet Glow By Liquor.co

Ingredients

- » 30ml Zure Mattie Shot
- » 45ml Ketel 1 ambachtelijke jonge graanjenever
- » 30ml cranberry juice
- » 1 slice of lemon
- » Sprite
- » Ice
- » Mint

Steps

- Put some ice into a glass.
- Pour over the Zure Mattie, Ketel, and the cranberry juice.
- 3. Top off with sprite and stir.
- Garnish with some mint leaves (slapped) and the lemon slice. Enjoy!

Academia Throughout Time

An interview with Herbert Jaeger

Motivated by his recent retirement, the committee wanted to feature student-favourite professor Herbert Jaeger in this edition of our magazine. Having been active in academia for decades Herbert Jaeger offers an interesting look into the past and future of academia. Herbert Jaeger graduated from the university of Freiburg in Mathematics and Psychology, went on to do a PhD in Computer Science in Bielefeld and eventually ended up at our lovely Bernoulli Institute.

What motivated your shift from mathematics to CS/AI?

Coincidence. Back then, students had no career master plans. After mathematics I was interested in Complex Systems. I asked a few professors of theoretical physics, of whose existence I knew from books they had written, for a position. There was no internet, you could not look for positions very easily. How did I learn about opportunities? Random lucky chances.

A fun story: How I found my PhD position? Well actually, it found me. I was working on my diploma thesis, now called master thesis, which was about formal logic. In Freiburg there was a library for books about formal logic, where I was trying to pull a certain book out of the shelf. My hand accidentally missed the book, and grabbed the one beside it. As it was alphabetically ordered, it had, in content, nothing to do with the other book. And I thought "Oh this is really interesting too". It was a random lucky draft. I borrowed this book, read

How I found my PhD position? Well actually, it found me.

This is the letter

it, I don't even remember what it was about exactly. But there was a reference to a doctoral thesis that seemed interesting to me. Back then you could not just download theses. So I wrote a letter to that university asking if I could get a copy of that thesis... And I never heard back from them. Until about 1-2 years later, in a completely different life situation and after many adventures, I got a letter from the author of that paper. He thought it was interesting how motivated I was in asking for his thesis. We stayed in contact and after some time he hired me for a PhD in Computer Science in Bielefeld.

I had never planned to work in Computer Science. It was this jolly jumping random walk through life, which was still possible at that time.

Do people still find positions like this today?

Today students have to scheme and schedule. You have to collect "good points" and this is a relatively new thing, seen in the last 20 years. It is sad to see this. I should add, most of the PhD students that I have supervised and monitor, they also do not tick off boxes of things they have to do. They were curiosity-driven and did crazy things. They talked to new people and got internships because they were interesting and intelligent to talk to. But it is tough to be this type anymore. Back in my time it was easy to do that. It was not necessary to build a CV and shape your career.

Are there any other big changes to the academic world you have observed?

The way you live in the academic world and the way you have to survive has changed a lot. It has become a lot more competitive. Should you wish to become a professor, you have to move up the ladder, first a PhD, then a post-doc, moving on to an assistant professorship and so on...

Take an assistant professor as an example, these are not tenured positions. You get a large list of official requirements you need to have accomplished in your five years as an assistant professor, in order to become an assistant professor with tenure (i.e. you can't be fired anymore). After these five years you either achieve tenure or you are out, and the majority is out because there are not enough positions.

The workload in this checklist is, I think, breathtakingly gigantic: you have to teach a lot, you have to do internal admin things, you need to be in committees, and the most brutal one: you need to get funding. Of course, next to this you also need to do research and publish. There are minimum numbers for all of this. And this is almost not doable.

If you don't succeed after these five years, in our field (AI/CS) you have great chances at a job elsewhere. But in any other field this is not necessarily the case. You are 35, too old for the normal job

market, and super-specialized in what you have been doing academically. It can be very high-risk and a lot of effort.

After these five years you either achieve tenure or vou are out, and the ma-

jority is out...

This is what I try to tell students that come to me for career advice. I tell them only do this if you are very sure you want to teach and do research. It is not like any other career option you might consider. It is all or nothing—A steep hill you should only attempt to climb if you are certain you are a born researcher and teacher.

What is your view on the current state of AI research? How have things changed since you started your career?

There is much to say about this. First of all, about using the word AI today. If you say AI outside of Bernoulli-

borg, AI means LLMs and maybe image generation. Today people identify LLMs with AI, they even use it as a noun: I have an AI which does this or that. This is very strange, it is a very narrow use of the word Al. Al, the general field as seen from the insider's view, still is full of very fundamental, hardly understood riddles. My favorite is the neuro-symbolic integration problem, how can brains made of millions zillions of neurons give rise to rational thought, logic and speech. Such fundamental questions will continue to be thought about in the wider cognitive sciences and in AI for a long time. And this is what drives me. I am not interested in LLMs. They happen to be super powerful, but the principles underlying them are very simple so they are not intellectually very pleasing or rewarding. At its core it is a combination of several things: the internet with its huge masses of accessible data, parallel processing machinery, money to pay the electricity bill and good heuristics for gradient descent. Taking screws as an example, I don't think you can have very

super-screw.

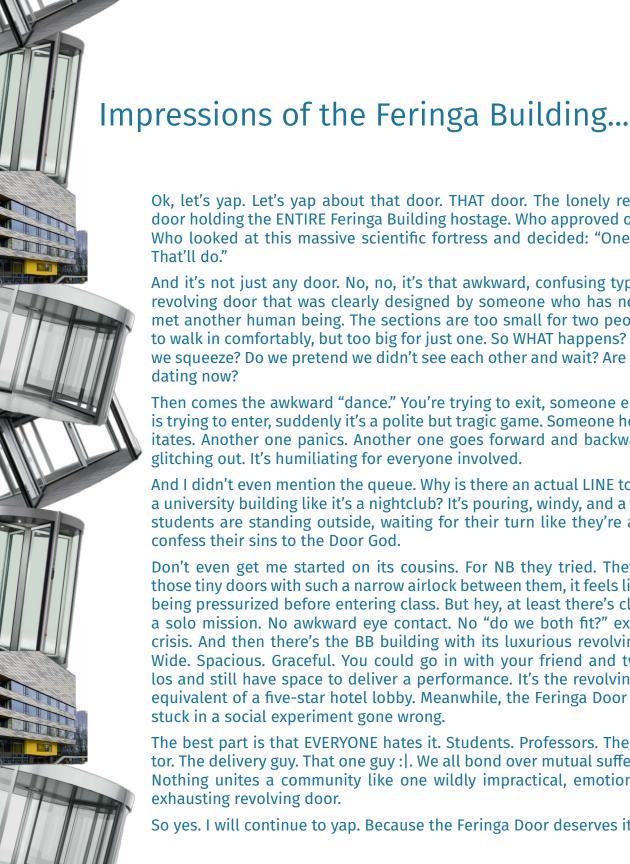
deep thoughts about screws. But many things cannot be done without screws. They are very important to have around, but not very intellectually rewarding. LLMs, to me, are a super-screw.

Do you have any predictions on what field in AI has the potential for a similar impact as Deep Learning had?

I can tell you about the horse on which I place my bet: neuromorphic computing, which is what we do here locally in our CogniGron centre. This is a fascinating intellectual playground, through the deep questions it shoots at you. Where we have difficulties answering them and can gain insights, real insights into these deep questions.

The field has many names, neuromorphic computing is currently the most widely used one, but this is not the final name I am sure. Sometimes it is called physics-based computing, material computing, unconventional computing or natural computing. The idea is always to try to build microchips that are not digital. So no switching 1s and 0s but based on other physical, analog, non-linear nanoscale effects of all sorts and you try to use these for computing. It is a mix between chemistry, mathematics, physics and computing. One of the two hotspots in Europe is here in Groningen, where we have the material scientists with their fine-grained nano-scale research and of course the Bernoulli Institute, with its dynamical systems mathematicians, AI researchers and computer scientists.

What did you like or were you surprised about in the Netherlands?


I really must say, I am totally happy here. It is absolutely magical. Many things are amazing about the Dutch experience. I came from Germany which is very bureaucratic. If someone from the Netherlands would do a job there it would mean weeks of hassle on doing administrative stuff. But for me coming the other direction from Germany to the Netherlands everything was so simple. On day one I was invited to an onboarding event in the city hall, where I and others starting a job were passed around through people representing the city, health insurance social security and more. I got all the information I needed and after one hour I was fully functional with all the registrations you need. It was unbelievable for a German that this could be done. It showed that the city of Groningen and the north of the Netherlands in general, wanted to have me. A very friendly and welcoming procedure.

What have you seen as the best parts of this collaborative environment?

As for academic results, there are a lot and it would take a while to talk about. But the personal level, that's interesting. This Groningen environment, the Bernoulli Institute and also the Zernike Institute (the physicists and chemists), has a very friendly atmosphere.

This is not always the case, you have universities where there are fiercely competitive hierarchies and bad feelings. Here there isn't a strong hierarchy, though I might be biased as I am high up in the hierarchy, technically speaking, because I am old. That is something that students probably don't see how smooth, nice, polite, cultivated and friendly the environment here is and that this is something special and not necesarily the case at any random institute.

Ok, let's yap. Let's yap about that door. THAT door. The lonely revolving door holding the ENTIRE Feringa Building hostage. Who approved of that? Who looked at this massive scientific fortress and decided: "One door.

And it's not just any door. No, no, it's that awkward, confusing type of revolving door that was clearly designed by someone who has never met another human being. The sections are too small for two people to walk in comfortably, but too big for just one. So WHAT happens? Do we squeeze? Do we pretend we didn't see each other and wait? Are we

Then comes the awkward "dance." You're trying to exit, someone else is trying to enter, suddenly it's a polite but tragic game. Someone hesitates. Another one panics. Another one goes forward and backward,

And I didn't even mention the queue. Why is there an actual LINE to enter a university building like it's a nightclub? It's pouring, windy, and a herd of students are standing outside, waiting for their turn like they're about to

Don't even get me started on its cousins. For NB they tried. They gave us those tiny doors with such a narrow airlock between them, it feels like you're being pressurized before entering class. But hey, at least there's clarity. It's a solo mission. No awkward eye contact. No "do we both fit?" existential crisis. And then there's the BB building with its luxurious revolving door. Wide. Spacious. Graceful. You could go in with your friend and two cellos and still have space to deliver a performance. It's the revolving door equivalent of a five-star hotel lobby. Meanwhile, the Feringa Door is still

The best part is that EVERYONE hates it. Students. Professors. The janitor. The delivery guy. That one guy: |. We all bond over mutual suffering. Nothing unites a community like one wildly impractical, emotionally

So yes. I will continue to yap. Because the Feringa Door deserves it.

P. S. Sign this petition to change the door:

Vlad George Coicea

